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Abstract. When two superconducting contacts are made on either side of a mesoscopic normal
wire, the electrical conductance is a periodic function of the phase difference between the
superconductors. For this structure, the oscillation at zero voltage and zero temperature is
a small mesoscopic effect, with an amplitude of ordere2/h. In contrast, we predict that a
finite bias voltageV will induce giant oscillations associated with the classical proximity effect.
These are a finite fraction of the overall conductance, exhibit a maximum wheneV equals
the Thouless energy, and decrease at higher voltages. This effect may account for the large-
amplitude oscillations measured in recent experiments by Petrashovet al.

Recent studies of normal–superconducting (N–S) nanostructures have highlighted a variety
of new phenomena associated with phase-coherent transport in the presence of Andreev
scattering [1–10]. For systems consisting of a superconductor in contact with a
semiconductor (Sm), the transmittance of the Schottky barrier (I) at the S–Sm interface
depends strongly on the carrier concentration in the semiconductor, which in turn can be
varied by doping or by tuning a gate voltage. Experiments on such structures [1–5] have
established that the subgap conductance of SIN junctions with a sufficiently high barrier
is not small at low temperaturesT . Moreover a peak in the conductance arises at zero
bias, the magnitude of which increases with decreasingT and becomes comparable with
the conductance in the normal state. An explanation for these phenomena was provided by
several authors [12–14, 20] starting from Zaitsev who developed a microscopic theory of
the subgap conductance [11]. Using microscopic equations for matrix Green functions
and associated boundary conditions, he calculated the differential conductance Sd for
short contacts S/N1/N2 (where a slash indicates an interface with a finite transmittance)
and showed that the zero-temperature conductance has a peak at zero bias (the zero-bias
anomaly). Later this theory was developed for contacts of different types and dimensions
[12, 13, 23] and alternative approaches suggested [14, 15, 20].

More recently, following earlier theoretical papers [16–20] on disordered transport in
the presence of two superconducting contacts, several new experiments [6–9] have probed
the phase-coherent nature of Andreev scattering. In these experiments, the difference
φ = φ1 − φ2 between the superconducting order parameter phasesφ1, φ2 is controlled by
some external means and the oscillatory dependence of the conductance onφ is measured.
Prior to these experiments, it was predicted [16, 17] that for a diffusive system of sizeL and
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diffusion coefficientD, in the high-temperature regimeT > T ∗, wherekBT ∗ = hD/L2, the
ensemble-averaged conductance should be a periodic function ofφ, with fundamental period
of π . In contrast at low temperaturesT < T ∗, it was predicted [18] that the ensemble-
averaged conductance should have a fundamental period of 2π . The latter prediction was
confirmed by detailed numerical simulations [19] and by further theoretical work [20].
Furthermore, in all experiments to date [6–9], the observed fundamental periodicity is 2π .

The experimental realization of such Andreev interferometers has stimulated a number
of new theoretical papers [21–27, 31], aimed at describing the amplitude and harmonic
structure of phase-periodic conductances. For samples with a conductance much greater
than e2/h, weak localization and mesoscopic fluctuations are negligible and the measured
conductance is closely approximated by the ensemble-averaged conductance, which can be
calculated by quasi-classical methods. On the other hand if the conductance is of ordere2/h,
then the ensemble-averaged conductance is of no interest and the former dominate. The
language used to describe quasi-classical calculations is that of the classical proximity effect,
whereas calculations of mesoscopic fluctuations and weak localization usually emphasize
the role of particle–hole interference. Despite the different languages, all of these theories
describe different aspects of the same phenomenon, whose existence ultimately arises from
the phase-coherent nature of Andreev scattering.

An exciting experimental result is the observation of oscillations with an amplitude
greater thane2/h [6]. These have since been described using quasi-classical Green function
techniques [22–24, 26] and numerical simulation [27, 28] and are predicted to be a feature of
Andreev phase-gradiometers, formed from single N–S contacts [25]. A related phenomenon
of giant backscattering has also been discussed [29]. These recent developments suggest
that studies of the crossover from mesoscopic to proximity effects in S/N structures will
prove to be a key testing ground for current theories. In this letter, we examine the effect of
increasing the bias voltage in the interferometer of figure 1. Remarkably, we predict that at
zero voltage only small oscillations are present, whereas at finite voltages large oscillations
arise, due to the proximity effect. These giant oscillations, which arise through particle–
hole symmetry breaking, exhibit a maximum amplitude at a voltage ofV ∗ = kBT ∗/e and
decrease as the voltage is further increased. Recently it was noted that quasi-classical
theory predicts that at zero temperature and zero voltage, the amplitude of oscillation in the
experiments of [6] should be zero, and therefore an explanation based on a thermal effect
was proposed [30]. Based on the results outlined below, we propose that particle–hole
symmetry breaking due to the use of a small but finite bias voltage provides an alternative
mechanism for large-amplitude effects, even at zero temperature.

To obtain this prediction, the structure of figure 1 will be analysed using both
quasi-classical theory and an exact numerical transfer matrix technique for solving the
Bogoliubov–de Gennes equation. If the S/N interface resistance dominates, the quasi-
classical calculation of the resistance of the system is obtained by generalizing an earlier
theory [11–13] of the subgap conductance in SIN contacts. This focuses on the following
component of the current, which in the case of a Josephson SIS junction, reduces to the
so-called interference current:

Iint = −(8RN)−1
∫

dε fV (ε)(FR + FA)(FR
S + FA

S ). (1)

In this expressionRN is the resistance of a SIN contact in the normal state;fV (ε) =
(tanh(ε + eV )β − tanh(ε − eV )β)/2 is the difference of the distribution functions;β =
(2T )−1; andF

R(A)
S andFR(A) are the condensate retarded (advanced) Green functions in the

superconducting and normal electrodes, respectively. In the latter case they differ from zero
due to the proximity effect. In the case of a planar junction and a weak proximity effect, if
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Figure 1. An Andreev interferometer formed from two
superconductors with order parameter phasesφ1, φ2,
in contact with a diffusive normal conductor (shown
shaded) via tunnel barriers (shown in black). The
current flows from left to right through the normal
conductor.

Figure 2. Numerical results (a) and quasi-classical
results (b) for the the amplitudeδG = [〈G(π)〉 −
〈G(0)〉]/〈G(0)〉 as a function of the scaled energyε/ε∗,
whereε∗ is the Thouless energy.

D, σ, d are the diffusion coefficient, specific conductivity and thickness of the normal film,
respectively andRN is the interface resistance per unit area in the normal state, they are
equal to

FR(A) = ± iεN

ε ± iγ
F

R(A)
S (2)

whereεN = D/(2σdRN) andF
R(A)
S = 1/((ε ± i0)2 − 12)1/2 are the retarded (advanced)

Green functions in the S film. The restriction to a weak proximity effect ensures that the
latter are unperturbed by the proximity effect itself. In equation (2),γ is the depairing
rate in the N film, determined by paramagnetic impurities, inelastic scattering processes and
an applied magnetic fieldH. It follows from equations (1) and (2) that the interference
currentIint in a SIN contact is non-zero only in the second order of the barrier transmittance
(i.e. it is proportional toR−2

N ) and it is small if the energy orγ is large. The product
(FR + FA)(FR

S + FA
S ) differs from zero only in the energy interval|ε| < 1, and is related

to the Andreev scattering processes. If the energy orγ is small enough, this product is not
small and the conductance related toIint can be comparable with the conductance in the
normal state.

In the case of an interferometer comprising two superconductors contacting the normal
film and separated by a distance of less thanLT = D/

√
T 2 + γ 2 one should use, instead

of equation (2), the more general formula written in a matrix form

F̂ R(A) = ± iε

ε ± iγ
(F̂

R(A)

S1 + F̂
R(A)

S2 ) (3)

and calculate the trace of the product(F̂ R + F̂ A)((F̂ R
S1 + F̂ A

S1) + (F̂ R
S2 + F̂ A

S2)), where
F̂

R(A)

S1 = F
R(A)

S1 iσ̂y, F̂
R(A)

S2 = F
R(A)

S2 (iσ̂y cosφ+iσ̂x sinφ). In this case, the conductance of the
system will depend on cosφ, whereφ is the phase difference between the superconductors,
and by measuring the amplitude of these oscillations one can determine the subgap
conductanceSsg, as suggested by Hekking and Nazarov [20].
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If the resistance of the S/N interface is small, the main contribution to the total resistance
of the S/N system is caused by the normal film. As mentioned above, the condensate
functionsFR(A) are induced in the N film due to the proximity effect (we note that1N

∼= 0
if the electron–phonon coupling constant in the normal film is negligible) and the resistance
of the N film is changed as compared to its value in the normal state (i.e. above critical
temperature of the superconductor) [12]. This deviation is caused by a change in the
distribution function, compared with its form in the normal state. Indeed, the spatial
dependence of the distribution functionf (ε) describing the branch imbalance and the electric
potentialV (x) is described by the equation (outside of the overlapping S/N region) [11–13]

∂x(1 − GRGA − FRFA) ∂xf (x, ε) = 0. (4)

Integrating this equation once, we obtain

[1 − GRGA − FRFA] ∂xf (x, ε = 2J (ε) (5)

where the integration constantJ (ε) determines the current in the N film

I = (σd/4)

∫
dε J (ε). (6)

In the normal state, the expression in the square brackets in equation (5) equals 2, because
GR = −GA = 1 and FR(A) = 0. Below Tc the condensate functionsFR(A) decay
exponentially along the N film over a correlation lengthLε = D/

√
ε2 + γ 2. The functions

GR(A) andFR(A) are connected by the normalization condition

(GR(A))2 − (FR(A))2 = 1. (7)

Therefore the expression in the square brackets in equation (5) can be rewritten in the form

[(GR − GA)2 − (FR − FA)2]/2 = 2[(ReGR)2 − (Im FR)2].

If the condensate functions are small (i.e. the proximity effect is weak), then using equation
(7) one can rewrite equation (5) in the form

[1 − (FR − FA)2/4] ∂xf (x, ε) = J (ε). (8)

The condensate functions in equation (8) lead to a change in a spatial dependence of the
distribution functionf (x, ε) when compared with its dependence in the normal state and
therefore to a change in the conductance of the normal film.

For the system shown in figure 1, assuming that the condensate functions in the N film
are small, i.e.|F R(A)| � 1, one can find a relation between the current in the system and
a voltage drop between the end-points, and hence an expression for the zero-temperature,
impurity-averaged, phase-periodic conductance〈G(φ)〉. For that purpose it is necessary to
solve a linear equation forFR(A)(x) as was done, for example, in [13, 26], and to calculate
the current using equations (6) and (8). The result for the amplitude of oscillation

δG = [〈G(0)〉 − 〈G(π)〉]/〈G(0)〉
is

δG = 2(k2
0Ls)

2L2χ(ε)/(1 − ε2/12)

wherek0 = [Gbarrier/(GNML)]1/2. Writing kε = (ε/2D)1/2(1 − i), θ = kεL = θ1 − iθ2 and
r = [θ coth(θ)]−1, yields

χ(ε) = |r|2
8

[
sinh(4θ1)/θ1 − sin(4θ2)/θ2

cosh(2θ1) − cos(2θ2)
− 4Re

{
cothθ∗

(
sinh2 θ1

θ1
− i

sin2 θ2

θ2

)}]

−1

4
Re

{
r2

sinh2 θ

(
sinh 2θ

2θ
− 1

)}
. (9)
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Figure 2(b) shows this function plotted againstε/ε∗. At zero temperatureδG(V ) is given by
the expression (9) withε replaced byeV . In order to obtainδG(V ) at finite temperatures,
equation (9) with the weight factor [1/ cosh2(ε + eV ) + 1/ cosh2(ε − eV )]/2 must be
integrated over all energies. The amplitude of oscillation vanishes atε = eV = 0, rises to
a maximum atε/ε∗ = 1 and decreases at higher voltages (ε∗ = D/L2).

As an independent check of this behaviour, figure 2(a) shows the result of an exact
numerical solution of the Bogoliubov–de Gennes equation, as outlined in [21]. This uses a
transfer matrix technique to compute the scattering matrix of a two-dimensional tight-binding
realization of figure 1, with diagonal disorder. In conjunction with [18], this technique
[19] provided the first prediction that the fundamental periodicity of the ensemble-averaged
conductance is 2π , in contrast with theπ -periodic effect of [16, 17]. In the simulations used
to obtain figure 2(a), the system dimensions wereM = 15, L = 10 sites and|1|/εF = 0.1,
where εF is the Fermi energy. The Thouless energyε∗ was obtained by carrying out
a separate simulation on the diffusive, shaded region alone and determining the normal-
state conductanceGN and normal-state density of states per siteN(0). In terms of these
quantities, the Einstein relation yieldsε∗ = (h/2e2)GN/(N(0)Ldiff M), whereLdiff = 3M

is the length of the diffusive region. For the simulation of figure 2(a),ε∗/εF = 0.0025. The
numerical results of figure 2(a) were obtained by ensemble averaging over a large number
of realizations of the disorder and clearly exhibit the same qualitative features of the quasi-
classical prediction. The latter predicts thatδG is positive for all finiteε and thereforeG(φ)

exhibits a zero-phase maximum. The numerical work agrees with this prediction, except for
for small ε, where the quasi-classical prediction vanishes, but the numerical work predicts
a small negative value forδG [32]. In this limit however, fluctuations are important and
the mean conductance is no longer a relevant quantity. For a given sample [19, 21], it is
known that the precise form of the remaining mesoscopic contribution toG(φ) depends on
the impurity configuration.

The above effect arises because at zeroε, particle–hole symmetry ensures that the
quantitykεL, which characterizes the difference between the accumulated phase of particle
and hole wavefunctions, vanishes at zero bias. This symmetry is broken at finite energies,
and therefore for structures such as that of [6], with a large value ofG(0), the amplitude is
extremely sensitive to the applied voltage. This effect may prove to be a useful experimental
tool, because by controlling the bias voltage in the structure of figure 1, it should be possible
to study the crossover from the mesoscopic to the classical regime. We note also that the
deviation of local conductivity of the system from its value in the normal stateδG(x) (x is
the distance from the centre of the channel) decays withx nonexponentially. AtT � ε∗

one can obtainδG(x) ∝ (1+ cosφ)(1− x/L)2. This nonexponential dependence is caused
by a contribution of the anomalous termsFRFA (see (8)) which decays with increasing
energy over a characteristic valueε∗.
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for Fundamental Research. One of the authors (AFV) is grateful to Professor C Lambert for
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